当前位置: 首页 > 减肥方法 >

负数减正数是什么数? 正数和负数知识点总结

有理数可以分为整数和分数,也可以分为正有理数、0和负有理数。而不是分为正数,负数和零。说整数是有理数,我给你举一个反例,根号下2是正数,但它不是有理数,而是无理数;还有圆周率,它也是正数,但是无理数,而非有理数!

1.1 正数和负数

以前学过的0以外的数前面加上负号“-”的书叫做负数。以前学过的0以外的数叫做正数。

数0既不是正数也不是负数,0是正数与负数的分界。

在同一个问题中,分别用正数和负数表示的量具有相反的意义

1.2 有理数

1.2.1 有理数——正整数、0、负整数统称整数,正分数和负分数统称分数。整数和分数统称有理数。

1.2.2 数轴

规定了原点、正方向、单位长度的直线叫做数轴。数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。⑵同一根数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

1.2.3 相反数

只有符号不同的两个数叫做互为相反数。数轴上表示相反数的两个点关于原点对称。

在任意一个数前面添上“-”号,新的数就表示原数的相反数。

1.2.4 绝对值

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。⑵两个负数,绝对值大的反而小。

1.3 有理数的加减法

1.3.1有理数的加法

有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。

⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。⑶一个数同0相加,仍得这个数。

两个数相加,交换加数的位置,和不变。加法交换律:a+b=b+a

三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。加法结合律:(a+b)+c=a+(b+c)

1.3.2有理数的减法

有理数的减法可以转化为加法来进行。

有理数减法法则:减去一个数,等于加这个数的相反数。a-b=a+(-b)

1.4 有理数的乘除法

1.4.1 有理数的乘法 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。乘积是1的两个数互为倒数。

几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。

两个数相乘,交换因数的位置,积相等。ab=ba

三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)c=a(bc)

一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。a(b+c)=ab+ac

数字与字母相乘的书写规范:

⑴数字与字母相乘,乘号要省略,或用“”⑵数字与字母相乘,当系数是1或-1时,1要省略不写。

⑶带分数与字母相乘,带分数应当化成假分数。

用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。

一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即ax+bx=(a+b)x

上式中x是字母因数,a与b分别是ax与bx这两项的系数。

去括号法则:

括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。

括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。

括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。

1.4.2 有理数的除法

有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。a÷b=a?(b≠0)

两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

1.5 有理数的乘方

1.5.1 乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。

有理数混合运算的运算顺序:

⑴先乘方,再乘除,最后加减;⑵同级运算,从左到右进行;⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行

1.5.2 科学记数法

把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。

用科学记数法表示一个n位整数,其中10的指数是n-1。

1.5.3 近似数和有效数字

接近实际数目,但与实际数目还有差别的数叫做近似数。精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。

从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。

对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。

相关文章
  • 坚持慢跑的好处到底有哪些?年纪越大也许越明显

    首先,跑步就是减肥。退休前G大哥就有点啤酒肚,虽然不是很大,但可以明显看出腹部堆积的脂肪。因为偏胖,所以他也患有轻度脂肪肝和高血脂。退休后,G大哥也是为了健康开始慢跑。他不追求速度,对自己只有一个要求就是不能放弃,不能半途而废,一定要坚持跑下去。就这样慢慢跑,每个月就是100多公里的跑量,持续了一年

  • 你爬楼梯吗?研究:每天爬楼梯,能降低心脏病风险,延长寿命

    想象一下,每天上下班、回家,或是去商场购物时,你是否经常选择那便捷却略显无聊的电梯,而忽略了旁边那座默默无闻的楼梯?嘿,别急着摇头,因为接下来我要告诉你的,可能会让你对那平凡的楼梯刮目相看。一项新研究竟然发现,每天爬爬楼梯,不仅能降低心脏病风险,还可能帮你延长寿命!别急着去爬楼梯,先听我慢慢道来,这

  • 从减肥的角度上来说,跑步和游泳哪个更好些?

    第一:游泳VS跑步游泳:有锻炼场地的限制。游泳是全身运动几乎能锻炼到全身的每一块肌肉,利于整体塑形。除了抽筋呛水的可能性,对身体没有损伤。游完泳一般会有强烈的饥饿感,需要控制食欲。跑步:没有锻炼场地壁垒,只要有一双跑鞋你随时随地都能跑。相对游泳来说跑步重点锻炼的是腿部肌肉,能够帮你重点塑造较好的腿型

  • 真的没想到,减肥“最”快的运动竟是骑车!

    姐妹们,我跟你们说,我发现了一个减肥的大秘诀——骑车!以前我为了减肥,尝试过各种方法,跑步跑得气喘吁吁,节食饿得头晕眼花,可效果都不尽如人意。直到有一天,我偶然骑上了自行车,才发现这居然是减肥的绝佳方式。起初我只是觉得骑车能看看风景,放松心情。但骑了一段时间后,我惊喜地发现体重开始下降了。每次骑车,

  • 快走慢跑就能锻炼身体?这可能是最大的误区!

    你是否也曾听过这样的说法:“快走慢跑就能锻炼身体”?可你知道吗?这句话可能是中老年人最大的误区之一!许多人认为,只要每天坚持走路,就能保持健康,殊不知,这种观念背后隐藏着多少健康隐患!想象一下,早晨的公园里,老人们排着队,迈着轻快的步伐,满脸自信地说:“我在锻炼!”可实际上,他们的身体真的在受益吗?

  • 锻炼身体是慢跑的还是快走好

    在现代生活中,健康日益成为人们关注的焦点。在多种多样的锻炼方式中,慢跑和快走因其实用、简便、门槛低的特点受到了大众的广泛欢迎。然而,面对这两种方式,很多人会有疑问:锻炼身体是慢跑好还是快走好?**一、慢跑的优势**首先,我们来看看慢跑。慢跑是一种中等强度的有氧运动,它的好处主要体现在以下几个方面:1